NAS-X: Neural Adaptive Smoothing via Twisting

Dieterich Lawson*, Michael Y. Li*, Scott W. Linderman
dieterichl@google.com, michaelyli@stanford.edu, scott.linderman@stanford.edu

Summary

Fitting sequential latent variable models is

 hard!Why? High-variance gradients and discrete latents!

NAS-X = smoothing + reweighted wake sleep L Low variance and low bias gradients. Versatile - handles discrete latents. E Easy to train, minimal computational overhead.
Significantly outperforms prior methods.

Reweighted Wake Sleep

Fisher's identity: Gradient of log marginal likelihood is a posterior expectation.
$\nabla_{\theta} \log p_{\theta}\left(\mathbf{y}_{1: T}\right)=\mathbb{E}_{p_{\theta}\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right)}\left[\nabla_{\theta} \log p_{\theta}\left(\mathbf{x}_{1: T}, \mathbf{y}_{1: T}\right)\right]$
RWS estimates expectation via importance

sampling

$\sum_{i=1}^{N} \bar{w}^{(i)} \nabla_{\theta} \log p_{\theta}\left(\mathbf{x}_{1: T}^{(i)}, \mathbf{y}_{1: T}\right), \quad \mathbf{x}_{1: T}^{(i)} \sim q_{\phi}\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right)$,
$\bar{w}^{(i)} \propto \frac{p_{\theta}\left(\mathbf{x}_{1: T}^{(i)}, \mathbf{y}_{1: T}\right)}{q_{\phi}\left(\mathbf{x}_{1: T}^{(i)} \mid \mathbf{y}_{1: T}\right)}$

Estimating Posterior Expectations via Smoothing Sequential Monte Carlo NAS-X estimates with smoothing SMC with twists r. Twists learned via density ratio estimation.

$$
\sum_{t=1}^{T} \sum_{i=1}^{N} \bar{w}_{t}^{(i)} \nabla_{\theta} \log p_{\theta}\left(\mathbf{x}_{t}^{(i)}, \mathbf{y}_{t} \mid \mathbf{x}_{t-1}^{(i)}\right)
$$

$\mathbf{x}_{1: T}^{1: N}, \bar{w}_{1: T}^{1: N} \leftarrow \operatorname{SMC}\left(\left\{p_{\theta}\left(\mathbf{x}_{1: t}, \mathbf{y}_{1: t}\right), q_{\phi}\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{y}_{t: T}\right), r_{\psi}\left(\mathbf{x}_{t}, \mathbf{y}_{t+1: T}\right)\right\}_{t=1}^{T}\right)$
Under certain conditions, NAS-X has unbiased and consistent gradient estimates.

Linear Gaussian SSM

NAS-X has tighter variational bound, and recovers true posterior.

NAS-X recovers the true twist parameters.

Discrete latent variables

NAS-X can handle discrete latents.

(b) Train $\mathcal{L}_{\text {BPF }}^{1024}$ for rSLDS.			
Method	$\sigma_{O}^{2}=0.001$	$\sigma_{O}^{2}=0.01$	$\sigma_{O}^{2}=0.1$
NAS-X	$\mathbf{1 9 . 8 3 7} \pm \mathbf{0 . 0 2 3 4}$	$\mathbf{8 . 6 3} \pm \mathbf{0 . 0 0 1 5}$	-2.79 ± 0.0009
NASMC	19.834 ± 0.0018	8.53 ± 0.001	-2.874 ± 0.0007
Laplace EM	19.154 ± 0.057	8.54 ± 0.0039	$-\mathbf{- 2 . 7 6 5} \pm \mathbf{0 . 0 0 1 2}$
RWS	17.148 ± 0.087	6.314 ± 0.023	-5.78 ± 0.0026

By smoothing, NAS-X learns better models than RWS methods.

Hodgkin Huxley model
Hodgkin-Huxley, a mechanistic model of neural dynamics.

NAS-X is 4-64x more particle-efficient than prior methods.

NAS-X perfectly infers the latent voltage.

NAS-X has lower variance and lower bias gradients.

